Publications

List of our publications.

70. Borane-Mediated Highly Secondary Selective Deoxyfluorination of Alcohols Dominic Willcox, Nojus Cironis, Laura Winfrey, Sven Kirschner, Gary Nichol, Stephen Thomas, and Michael Ingleson* Angew. Chem. Int. Ed. 2024, e202418495

Borane-Mediated Highly Secondary Selective Deoxyfluorination of Alcohols

69. Multifaceted Hidden Catalysis Revealed by Mechanistic Analysis of FeBr3-Catalysed Arene Borylation Luke Britton, Andrew D. Bage, Sarah L. McOnie, Stephen P. Thomas*  Angew. Chem. Int. Ed. 2024, e202423929    

 Multifaceted Hidden Catalysis

68. Hidden Boron Catalysis: A Cautionary Tale on TMEDA Inhibition Julie Macleod, Andrew D. Bage, Leonie M. Meyer, Stephen P. Thomas*, Org. Lett. 2024, 26, 9564–9567

Hidden Boron Catalysis: A Cautionary Tale on TMEDA Inhibition

67. Borane-catalysed C2-selective indole reductive functionalisation Kieran Nicholson, Sarah McOnie, Thomas Langer, Gary S. Nichol, and Stephen P. Thomas* Chem. Commun., 2024, 60, 10748 - 10751 

Borane-catalysed C2-selective indole reductive functionalisation

66. Transition Metal-Free Catalytic C−H Zincation and Alumination Milan Kumar Bisai*, Justyna Losiewicz, Lia Sotorrios, Gary Nichol, Andrew Dominey, Michael Cowley, Stephen Thomas, Stuart Macgregor*, and Michael Ingleson* Angew. Chem. Int. Ed., 2024, e202404848

Transition Metal-Free Catalytic C−H Zincation and Alumination

65. Catalytic Access to Diastereometrically Pure Four-and Five-Membered Silyl-Heterocycles Using Transborylation Dominic R. Willcox*, Emanuele Cocco, Gary S. Nichol, Armando Carlone and Stephen P. Thomas* Angew. Chem. Int. Ed., 2024,  e202401737 

Catalytic Access to Diastereometrically Pure Four-and Five-Membered Silyl-Heterocycles Using Transborylation

64. Group 13 Exchange and Transborylation in Catalysis Dominic Willcox and Stephen P. Thomas* Beilstein J. Org. Chem. 2023, 19, 325–348.

Group 13 Exchange and Transborylation in Catalysis

63. Transborylation-Enabled Boron Catalysis Andrew D. Bage, Kieran Nicholson, Thomas A. Hunt, Thomas Langer and Stephen P. Thomas∗ Synthesis 2023, 55, 62-74. Selected for the cover of Synthesis.

Transborylation-Enabled Boron Catalysis

62. Stereoselective alkyl–alkyl cross-coupling Mark D. Greenhalgh and Stephen P. Thomas Nature Catalysis 2022, 5, 1079–1080.

News and views logo

61. B–N/B–H Transborylation: Borane-catalysed Nitrile Hydroboration Filip Meger, Alexander C. W. Kwok, Franziska Gilch, Dominic R. Willcox, Alex J. Hendy, Kieran Nicholson, Andrew D. Bage, Thomas Langer, Thomas A. Hunt and Stephen P. Thomas* Beilstein J. Org. Chem. 2022, 18, 1332–1337.

B–N/B–H Transborylation: Borane-catalysed Nitrile Hydroboration 

60. Iron-catalysed C(sp2)-H Borylation with Expanded Functional Group Tolerance Luke Britton, Jamie H. Docherty, Gary S. Nichol, Andrew P. Dominey, and Stephen P. Thomas*  Chin. J. Chem. 2022, 40, 2875—2881.

Iron-catalysed C(sp2)-H Borylation with Expanded Functional Group Tolerance

59. Boron-Catalyzed, Diastereo- and Enantioselective Allylation of Ketones with Allenes Kieran Nicholson, Yuxuan Peng, Natalia Llopis, Dominic R. Willcox, Gary S. Nichol, Thomas Langer, Alejandro Baeza and Stephen P. ThomasACS Catal. 2022, 12, 10887–10893.

Boron-Catalyzed, Diastereo- and Enantioselective Allylation of Ketones with Allenes

58. Iron-catalysed Alkene and Heteroarene H/D Exchange by Reversible Protonation of Iron-hydride Intermediates Luke Britton, Jamie H. Docherty,* Jan Sklyaruk, Jessica Cooney, Gary S. Nichol, Andrew P. Dominey and Stephen P. Thomas* Chem. Sci. 2022, 13, 10291–10298. Selected as part of the 2022 Chemical Science HOT Article Collection.

Iron-catalysed Alkene and Heteroarene H/D Exchange by Reversible Protonation of Iron-hydride Intermediates

57. Diastereoselective, Catalytic Access to Cross-aldol Products Directly from Esters and Lactones Adrián Moreno González, Kieran Nicholson*, Natalia Llopis, Gary S. Nichol, Thomas Langer, Alejandro Baeza, Stephen P. Thomas* Angew. Chem. Int. Ed. 2022, 61, e2022095. Featured in Chemistry World.

Diastereoselective, Catalytic Access to Cross-aldol Products Directly from Esters and Lactones

56. XtalFluor-E Effects the C3-H Sulfenylation of Indoles to Form Di-indole Sulfides Nojus Cironis, Kang Yuan, Stephen P. Thomas* and Michael J. Ingleson* Eur. J. Org. Chem. 2022, e202101394.

XtalFluor-E Effects the C3-H Sulfenylation of Indoles to Form Di-indole Sulfides

55. A Boron–nitrogen Transborylation Enabled, Borane-catalysed Reductive Cyanation of Enones Kieran Benn, Kieran Nicholson*, Thomas Langer and Stephen P. Thomas* Chem. Commun.2021, 57, 9406-9409. Contribution to themed collection "Boron chemistry in the 21st century: From synthetic curiosities to functional molecules

 A Boron–nitrogen Transborylation Enabled, Borane-catalysed Reductive Cyanation of Enones

54. Cobalt-Catalysed, Ligand-Controlled Regiodivergent Alkene Hydrosilylation Jamie H. Docherty, Andrew P. Dominey and Stephen P. Thomas* Asian J. Org. Chem. 2021, 10, 2379–2384.

54. Cobalt-Catalysed, Ligand-Controlled Regiodivergent Alkene Hydrosilylation Jamie H. Docherty, Andrew P. Dominey and Stephen P. Thomas* Asian J. Org. Chem. 2021, 10, 2379–2384.

53. Aluminium-Catalyzed C(sp)−H Borylation of Alkynes Dominic R Willcox, Daniel M De Rosa, Jack Howley, Abigail Levy, Alan Steven, Gary S Nichol, Carole A Morrison, Michael J Cowley*, Stephen P Thomas* Angew. Chem. Int. Ed. 2021, 60, 20672-20677.

Aluminium-Catalyzed C(sp)−H Borylation of Alkynes

52. C–H Borylation Catalysis of Heteroaromatics by a Rhenium Boryl Polyhydride Liam J. Donnelly, Teresa Faber, Carole A. Morrison, Gary S. Nichol, Stephen P. Thomas*, and Jason B. Love* ACS Catal. 2021, 11, 7394–7400.

C–H Borylation Catalysis of Heteroaromatics by a Rhenium Boryl Polyhydride

51. Manganese-Catalyzed C(sp2)-H Borylation of Furan and Thiophene Derivatives Luke Britton, Maciej Skrodzki, Gary Nichol, Andrew P. Dominey, Piotr Pawluć, Jamie H. Docherty*, and Stephen P. Thomas* ACS Catal. 2021, 11, 6857–6864.

Manganese-Catalyzed C(sp2)-H Borylation of Furan and Thiophene Derivatives

50. Borane-Catalyzed, Chemoselective Reduction and Hydrofunctionalization of Enones Enabled by B−O Transborylation Kieran Nicholson, Thomas Langer, and Stephen P. Thomas* Org. Lett. 2021, 23, 2498–2504.

Borane-Catalyzed, Chemoselective Reduction and Hydrofunctionalization of Enones Enabled by B−O Transborylation

49. Borane-Catalyzed C(sp3)–F Bond Arylation and Esterification Enabled by Transborylation Dominic R. Willcox*, Gary S. Nichol, and Stephen P. ThomasACS Catal. 2021, 11, 3190–3197.

 A Boron–nitrogen Transborylation Enabled, Borane-catalysed Reductive Cyanation of Enones

48. A Boron–Oxygen Transborylation Strategy for a Catalytic Midland Reduction Kieran Nicholson, Joanne Dunne, Peter DaBell, Alexander Beaton Garcia, Andrew D. Bage, Jamie H. Docherty, Thomas A. Hunt, Thomas Langer, Stephen P. Thomas* ACS Catal. 2021, 11, 2034–2040.

 A Boron–Oxygen Transborylation Strategy for a Catalytic Midland Reduction

47. Zwitterion-Initiated Hydroboration of Alkynes and Styrene Alessandro Bismuto, Michael J. Cowley*, Stephen P. Thomas*. Adv. Synth. Catal. 2020, 363, 2382-2385.

Zwitterion-Initiated Hydroboration of Alkynes and Styrene

46. The Hidden Role of Boranes and Borohydrides in Hydroboration Catalysis Andrew D. Bage, Kieran Nicholson, Thomas A. Hunt, Thomas Langer, and Stephen P. ThomasACS Catal. 2020, 10, 13479–13486.

The Hidden Role of Boranes and Borohydrides in Hydroboration Catalysis

45. Stuart Warren (24 Dec 1938–22 Mar 2020) Varinder K. Aggarwal, Susan K. Armstrong, Lorenzo Caggiano, Kelly Chibale, Jonathan Clayden*, Iain Coldham, Nicholas Greeves, Richard C. Hartley, Julian G. Knight, Nikolai Kuhnert, Helen J. Mitchell, Adam Nelson, Peter O’Brien, Stephen P. Thomas and Paul Wyatt Org. Biomol. Chem., 2020, 18, 7236–7237.

Stuart Warren (24 Dec 1938–22 Mar 2020) 

44. Accessing Low Oxidation-state Iron Catalysts; Iron-catalysed Reductive Functionalisation M. D. Greenhalgh and S. P. Thomas in Catalysis with Earth-abundant Elements ed. U. Schneider and S. P. Thomas RSC publishing. London, 2020.

Accessing Low Oxidation-state Iron Catalysts; Iron-catalysed Reductive Functionalisation

43. Synthesis and structures of anionic rhenium polyhydride complexes of boron–hydride ligands and their application in catalysis Liam J. Donnelly, Simon Parsons, Carole A. Morrison, Stephen P. Thomas * and Jason B. Love * Chem. Sci., 2020, 11, 9994-9999.

Synthesis and structures of anionic rhenium polyhydride complexes of boron–hydride ligands and their application in catalysis

42. TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0) Peter G. N. Neate, Mark Greenhalgh, William Brennessel, Stephen P Thomas* and Michael Neidig* Angew.Chem. Int. Ed. 2020, 59, 17070–17076.

TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)

41. Hidden Boron Catalysis: Nucleophile-Promoted Decomposition of HBpin Andrew D. Bage, Thomas A. Hunt, and Stephen P. Thomas*. Org. Lett. 2020, 22, 4107–4112.

Hidden Boron Catalysis: Nucleophile-Promoted Decomposition of HBpin

40. Characterization of the zwitterionic intermediate in 1,1‐carboboration of alkynes Alessandro Bismuto, Gary S. Nichol, Fernanda Duarte*, Michael J. Cowley*, Stephen P. Thomas*. Angew. Chem. Int. Ed. 2020, 59 , 12731–12735

Characterization of the zwitterionic intermediate in 1,1‐carboboration of alkynes

39. A Boron-Boron Double Transborylation Strategy for the Synthesis of gem-Diborylalkanes Jamie H. Docherty, Kieran Nicholson, Andrew Dominey and Stephen P Thomas* ACS Catal. 2020, 10, 4686-4691.

A Boron-Boron Double Transborylation Strategy for the Synthesis of gem-Diborylalkanes

38. Activation Strategies for Earth-Abundant Metal Catalysis Jingying Peng and Stephen P. Thomas* Synlett 2020, 31, 1140-1146.

Activation Strategies for Earth-Abundant Metal Catalysis

37. Synthesis of DBpin using Earth-abundant metal catalysis Andrew W. M. Cummins, Shuyang Li, Dominic R. Willcox, Tommi Muilu, Jamie H. Docherty*, Stephen P. Thomas* Tetrahedron, 76, 2020, 131084.

Synthesis of DBpin using Earth-abundant metal catalysis

36. Iron-Catalysed C(sp2 )-H Borylation Enabled by Carboxylate Activation Luke Britton, Jamie H. Docherty*, Andrew P. Dominey, and Stephen P. Thomas* Molecules 2020, 25, 905. Contributed to special issue "Recent Advances in Iron Catalysis" Molecules Editor's Choice: Organometallics Jan-Mar 2020.

Iron-Catalysed C(sp2 )-H Borylation Enabled by Carboxylate Activation

35. Iron Catalysis in Target Synthesis P. DaBell, S. P. Thomas* Synthesis 2020, 52, 949-963.

Iron Catalysis in Target Synthesis

34. Kinetics and Mechanism of the Arase-Hoshi R2BH-Catalyzed Alkyne Hydroboration: Alkenylboronate generation via B-H/C-B Metathesis Eduardo Nieto-Sepulveda, Andrew D. Bage, Louise A. Evans, Thomas A. Hunt, Andrew G. Leach, Stephen P. Thomas*, and Guy C. Lloyd-Jones* J. Am. Chem. Soc. 2019, 141, 18600−18611.

Kinetics and Mechanism of the Arase-Hoshi R2BH-Catalyzed Alkyne Hydroboration: Alkenylboronate generation via B-H/C-B Metathesis

33. Recent Advances in the Deoxydehydration of Vicinal Diols and Polyols Liam J. Donnelly, Stephen P. Thomas,* and Jason B. Love* Chem. Asian J. 2019, 14, 3782 –3790

Recent Advances in the Deoxydehydration of Vicinal Diols and Polyols

32. Mechanism of the Bis(imino)pyridine Iron-Catalysed Hydromagnesiation of Styrene Derivatives Peter Neate, Mark D. Greenhalgh, William W. Brennessel, Stephen P. Thomas and Michael L. Neidig  J. Am. Chem. Soc. 2019, 141, 10099-10108.

Mechanism of the Bis(imino)pyridine Iron-Catalysed Hydromagnesiation of Styrene Derivatives

31. Nucleophile induced ligand rearrangement reactions of alkoxyl- and arylsilanes Jamie H. Docherty, Andrew P. Dominey and Stephen P. Thomas. Tetrahedron 2019, 75, 3330-3335.

Nucleophile induced ligand rearrangement reactions of alkoxyl- and arylsilanes

30. Regiodivergent Hydrosilylation, Hydrogenation, [2+2]-Cycloaddition and C–H Borylation using Counterion Activated Earth-abundant Metal Catalysis Riaz Agahi, Amy J. Challinor, Joanne Dunne, Jamie Docherty, Neil B. Carter and Stephen P. Thomas. Chem. Sci. 2019, 10, 5079-5084.

Regiodivergent Hydrosilylation, Hydrogenation, [2+2]-Cycloaddition and C–H Borylation using Counterion Activated Earth-abundant Metal Catalysis

29. Earth-Abundant Metal Catalysis Enabled by Counterion Activation Riaz Agahi, Amy J. Challinor, Neil B. Carter and Stephen P. Thomas. Org. Lett. 2019, 21, 993-997.

Earth-Abundant Metal Catalysis Enabled by Counterion Activation

28. Manganese-Catalysed Hydrofunctionlization of Alkenes. Jonathan R. Carney, Barry R. Dillon, Leonie Campbell and Stephen P. Thomas. Angew. Chem. Int. Ed. 2018, 57, 10620-10624.

Manganese-Catalysed Hydrofunctionlization of Alkenes

27. Aluminum-catalysed hydroboration of alkenes. Alessandro Bismuto, Michael J. Cowley and Stephen P. Thomas, ACS Catal. 2018, 8, 2001-2005.

Aluminum-catalysed hydroboration of alkenes

26. Borane-Catalysed Hydroboration of Alkynes and Alkenes. Nate W. J. Ang, Cornelia S. Buettner, Scott Docherty, Alessandro Bismuto, Jonathan R. Carney, Jamie H. Docherty, Michael J. Cowley, Stephen P. Thomas.  Synthesis 2018, 50, 803-808.

Borane-Catalysed Hydroboration of Alkynes and Alkenes

25. Cobalt-catalysed Markovnikov selective hydroboration of vinylarenes.  Jingying Peng, Jamie H. Docherty, Andrew P. Dominey and Stephen P. Thomas, Chem. Commun. 2017, 53, 4726–4729.

Cobalt-catalysed Markovnikov selective hydroboration of vinylarenes

24. Iron-Catalyzed Heck-Type Alkenylation of Functionalized Alkyl Bromides. Kailong Zhu, Joanne Dunne, Michael P. Shaver and Stephen P. Thomas, ACS Catal. 2017, 7, 2353-2356.

Iron-Catalyzed Heck-Type Alkenylation of Functionalized Alkyl Bromides

23. Activation and Discovery of Earth-Abundant Metal Catalysts Using Sodium tert-Butoxide. Jamie H. Docherty, Jingying Peng, Andrew P. Dominey and Stephen P. Thomas, Nature Chem. 2017, 9, 595-600.

Activation and Discovery of Earth-Abundant Metal Catalysts Using Sodium tert-Butoxide

22. Aluminium Hydride Catalyzed Hydroboration of Alkynes. Alessandro Bismuto, Stephen P. Thomas and Michael J. Cowley, Angew. Chem. Int. Ed. 2016, 55, 15356-15359.

Aluminium Hydride Catalyzed Hydroboration of Alkynes

21. Markovnikov-Selective, Activator-Free Iron-Catalyzed Vinylarene Hydroboration. Alistair J. MacNair, Clément R. P. Millet, Gary S. Nichol, Alan Ironmonger and Stephen P. Thomas, ACS Catal. 2016, 6, 7217-7221.

Markovnikov-Selective, Activator-Free Iron-Catalyzed Vinylarene Hydroboration

20. Amine-Activated Iron Catalysis: Air- and Moisture-Stable Alkene and Alkyne Hydrofunctionalization. Amy J. Challinor, Marc Calin, Gary S. Nichol, Neil B. Carter and Stephen P. Thomas, Adv. Synth. Catal. 2016, 15, 2404-2409.

Amine-Activated Iron Catalysis: Air- and Moisture-Stable Alkene and Alkyne Hydrofunctionalization

19. Recent Advances of Manganese Catalysis for Organic Synthesis Jonathan R. Carney, Barry R. Dillon and Stephen P. Thomas, Eur. J. Org. Chem. 2016, 23, 3912-3929.

Recent Advances of Manganese Catalysis for Organic Synthesis

18. Amine-bis(phenolate) Iron(III)-catalysed Formal Hydroamination of Olefins. Kailong Zhu, Michael P. Shaver and Stephen P. Thomas, Chem. Asian. J. 2016, 11, 977-980.

Amine-bis(phenolate) Iron(III)-catalysed Formal Hydroamination of Olefins

17. Chemoselective Nitro Reduction and Hydroamination Using a Single Iron Catalyst. Kailong Zhu, Michael P. Shaver and Stephen P. Thomas, Chem. Sci. 2016, 7, 3031-3035.

Chemoselective Nitro Reduction and Hydroamination Using a Single Iron Catalyst.

16. Iron Oxides and Simple Iron Salt-based Catalysis. Jamie H. Docherty and Stephen P. Thomas in Sustainable Catalysis: With Non-endangered Metals, Part 1 ed. North, M. RSC Publishing, London, 2015.

Iron Oxides and Simple Iron Salt-based Catalysis

15. Stable and Easily Handled Fe(III) Catalysts for Hydrosilylation of Ketones and Aldehydes. Kailong Zhu, Michael P. Shaver and Stephen P. Thomas. Eur. J. Org. Chem. 2015, 2119-2123.

Stable and Easily Handled Fe(III) Catalysts for Hydrosilylation of Ketones and Aldehydes

14. Iron-Catalysed Hydrofunctionalisation of Alkenes and Alkynes. Mark D. Greenhalgh, Alison S. Jones and Stephen P. Thomas. ChemCatChem 2015, 7, 190-222.

Iron-Catalysed Hydrofunctionalisation of Alkenes and Alkynes

13. Broad Scope Hydrofunctionalization of Styrene Derivatives Using Iron-Catalyzed Hydromagnesiation. Alison S. Jones, James F. Paliga, Mark D. Greenhalgh, Jacob M. Quibell, Alan Steven and Stephen P. Thomas. Org. Lett. 2014, 16, 5964-5967.

Broad Scope Hydrofunctionalization of Styrene Derivatives Using Iron-Catalyzed Hydromagnesiation

12. Iron-catalysed, general and operationally simple formal hydrogenation using Fe(OTf)3 and NaBH4Alistair J. MacNair, Ming-Ming Tran, Jennifer E. Nelson, G. Usherwood Sloan, Alan Ironmonger and Stephen P. Thomas. Org. Biomol. Chem. 2014, 12, 5082-5088.

Iron-catalysed, general and operationally simple formal hydrogenation using Fe(OTf)3 and NaBH4.

11. Iron-Catalyzed Hydromagnesiation: Synthesis and Characterization of Benzylic Grignard Reagent Intermediate and Application in the Synthesis of Ibuprofen. Mark D. Greenhalgh, Adam Kolodziej, Fern Sinclair and Stephen P. Thomas. Organometallics 2014, 33, 5811–5819.

Iron-Catalyzed Hydromagnesiation: Synthesis and Characterization of Benzylic Grignard Reagent Intermediate and Application in the Synthesis of Ibuprofen

10. Iron-Catalysed Reductive Cross-Coupling of Alkenes. Mark D. Greenhalgh and Stephen P. Thomas. ChemCatChem 2014, 6, 1520-1522.

Iron-Catalysed Reductive Cross-Coupling of Alkenes

09. Iron-Catalysed Chemo-, Regio-, and Stereoselective Hydrosilylation of Alkenes and Alkynes using a Bench-Stable Iron(II) Pre-Catalyst. Mark D. Greenhalgh, Dominik J. Frank and Stephen P. Thomas. Adv. Synth. Catal. 2014, 356, 584-590.

Iron-Catalysed Chemo-, Regio-, and Stereoselective Hydrosilylation of Alkenes and Alkynes using a Bench-Stable Iron(II) Pre-Catalyst

08. Heterogeneous Catalytic Hydrogenation of C=C and C≡C bonds. Stephen P. Thomas and Mark D. Greenhalgh, in Comprehensive Organic Synthesis, 2nd Ed.; Clayden, J., Vol. Ed.; Molander, G. A.; Knochel, P., Eds.; Elsevier, 2014; Vol. 8, pp. 564-604.


07. Iron-Catalysed Alkene Hydrogenation and Reductive Cross-Coupling Using a Bench-Stable Iron(II) Pre-catalyst. Dominik J. Frank, Léa Guiet, Alexander Käslin, Elliot Murphy and Stephen P. Thomas. RSC Adv. 2013, 3, 25698-25701.

Iron-Catalysed Alkene Hydrogenation and Reductive Cross-Coupling Using a Bench-Stable Iron(II) Pre-catalyst

06. Chemo-, Regio-, and Stereoselective Iron-Catalysed Hydroboration of Alkenes and Alkynes. Mark D. Greenhalgh and Stephen P. Thomas, Chem. Commun. 2013, 49, 11230-11232.

Chemo-, Regio-, and Stereoselective Iron-Catalysed Hydroboration of Alkenes and Alkynes

05. Iron-Catalysed Reduction of Olefins using a Borohydride Reagent. Tom S. Carter, Léa Guiet, Dominik J. Frank, James West and Stephen P. Thomas, Adv. Synth. Catal. 2013, 355, 880-884.

Iron-Catalysed Reduction of Olefins using a Borohydride Reagent.

04. Iron-Catalyzed Hydromagnesiation of Olefins. Mark D. Greenhalgh and Stephen P. Thomas, Synlett 2013, 24, 531-534.

Iron-Catalyzed Hydromagnesiation of Olefins

03. Iron-Catalyzed, Highly Regioselective Synthesis of α-Aryl Carboxylic Acids from Styrene Derivatives and CO2. Mark D. Greenhalgh and Stephen P. Thomas, J. Am. Chem. Soc. 2012, 134, 11900-11903. Highlighted in Synform, 2012/12: DOI: 10.1055/s-0032-1317501

Iron-Catalyzed, Highly Regioselective Synthesis of α-Aryl Carboxylic Acids from Styrene Derivatives and CO2

02. Iron-catalysed, hydride-mediated reductive cross-coupling of vinyl halides and Grignard reagents. Bryden A. F. Le Bailly, Mark D. Greenhalgh and Stephen P. Thomas, Chem. Commun. 2012, 48, 1580-1582.

Iron-catalysed, hydride-mediated reductive cross-coupling of vinyl halides and Grignard reagents

01. Iron-catalysed reduction of carbonyls and olefins. Bryden A. F. Le Bailly and Stephen P. Thomas, RSC Advances 2011, 1, 1435-1445.

Iron-catalysed reduction of carbonyls and olefins.