Structural Chemistry and Chemical Dynamics

The rational design of biological molecules and novel materials requires a fundamental understanding of precise nanoscale structure and probing the dynamics of molecular processes.

Structural chemistry allows the tailored design, synthesis and characterisation of materials with novel magnetic, electronic and (photo)catalytic properties. Experimental and theoretical investigations of chemical dynamics provide insight into crystal engineering, geological processes, supramolecular self-assembly.

Research in this theme utilises a range of characterisation techniques including NMR, EPR, diffraction (X-ray, electron and neutron), laser spectroscopy, mass spectrometry, electron microscopy, surface analysis (STM, AFM, NEXAFS, XPS) complemented by state-of-the-art computational methods. These tools are capable of high spatial or temporal resolution allowing the precise characterisation of the structure of biological molecules and novel materials and the dynamics of molecular transformations and materials processing.

Research aims to link the function of molecules and materials with structure. Rational design of new structures with novel properties is targeted with applications in areas such as fuel cells, batteries, catalysis, solar cells, magnetic materials. Research into the dynamics of chemical processes contributes crucially in optimising charge transport in materials and photocatalysis, in self-assembly at surfaces and in the crystallisation of pharmaceuticals.

At EaStCHEM, our particular research strengths in Structural Chemistry and Chemical Dynamics are in the areas of:

  • In-operando studies
  • Diffraction techniques
  • Spectroscopic characterisation
  • Electron Microscopy
  • Surfaces and interfaces
  • Theory and computation
  • Ultrafast imaging and spectroscopy
  • Reaction dynamics
  • Magnetic molecules and materials
  • Electrochemistry
  • Structural biology
  • Crystallisation

Research Theme Contact

EaStCHEM

Details of Structural Chemistry and Chemical Dynamics research at our EaStCHEM partner St Andrews can be found on their website at the link below.

Long range electronic phase separation in CaFe3O5 K. H. Hong, A. M. Arevalo-Lopez, J. Cumby, C. Ritter and J. P. Attfield Nature Communications, 2018, 9, 2975.

Ellipsoidal analysis of coordination polyhedra J. Cumby and J. P. Attfield Nature Communications, 2017, 8, 14235.

Structure and Friction of Stearic Acid and Oleic Acid Films Adsorbed on Iron Oxide Surfaces in Squalane M. Doig, C. P. Warrens and P. J. Camp Langmuir, 2014, 30, 186-195.

Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments D. He, S. Hughes, S. Vanden-Hehir, A. Georgiev, K. Altenbach, E. Tarrant, C. L. Mackay, K. J. Waldron, D. J. Clarke and J. Marles-Wright eLife 2016;5:e18972.

Directly probing spin dynamics in a molecular magnet with femtosecond time-resolution J. O. Johansson, J.-W. Kim, E. Allwright, D. M. Rogers, N. Robertson and J.-Y. Bigot Chem. Sci., 2016, 7, 7061. 

Imaging molecular motion: Femtosecond x-ray scattering of an electrocyclic chemical reaction M. P. Minitti, J. Budarz, A. Kirrander, J. Robinson, D. Ratner, T. J. Lane, D. Zhu, J. M. Glownia, M. Kozina, H. T. Lemke, M. Sikorski, Y. Feng, S. Nelson, K. Saita, B. Stankus, T. Northey, J. B. Hastings and P. M. Weber Phys. Rev. Lett., 2015, 114, 255501.

Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl Boronic Acids: pH–Rate Profiles, Autocatalysis, and Disproportionation P. A. Cox, A. G. Leach, A. D. Campbell, G. C. Lloyd-Jones J. Am. Chem. Soc. 2016, 138, 9145-9157.

Understanding the adsorption process of small molecules in ZIF-8 using high pressure crystallography and computational modelling C. L. Hobday, C. Woodall, M. Frost, K. Kamenev, T. Düren, C. A. Morrison and S. Moggach  Nat. Commun. 2018, 9, 1429.

Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers C. H. Woodall, G. A. Craig, A. Prescimone, M. Misek, J. Cano, J. Faus, M. R. Probert, S. Parsons, S. Moggach, J. Martinez-Lillo, M. Murrie, K. V. Kamenev and E. K. Brechin Nature Communications 2016, 7, 13870.

Structural basis for sialic acid-mediated self-recognition by complement factor H B. S. Blaum, J. P. Hannan, A. P. Herbert, D. Kavanagh, D. Uhrín and T. Stehle Nature Chem. Biol., 2015, 11, 77–82.

Enhanced photoluminescence emission and thermal stability from introduced cation disorder in phosphors C. C. Lin, Y.-T. Tsai, H. E. Johnson, M.-H. Fang, F. J. Yu, W. Z. Zhou, P. Whitfield, Y. Li, J. Wang, R.-S. Liu, J. P. Attfield, J. Am. Chem. Soc. 2017, 139, 11766-11770.

Angle-resolved photoelectron spectroscopy and scanning tunnelling spectroscopy studies of the endohedral fullerene Li@C60 M. Stefanou, H. J. Chandler, B. Mignolet, E. Williams, S. A. Nanoh, J. O. F. Thompson, F. Remacle, R. Schaub and E. E. B. Campbell, Nanoscale, 2019, 11, 2668-2678.

Li@C60 as a multi-state molecular switch H. J. Chandler, M. S. Stefanou, E. E. B. Campbell and R. Schaub, Nature Communications, 2019, 10, 2283.

A DFT study of 2-aminopurine-containing dinucleotides: prediction of stacked conformations with B-DNA structure D. A. Smith, L. F. Holroyd, T. van Mourik and Anita C. Jones Phys. Chem. Chem. Phys., 2016, 18, 14691-14700.

Pore shape modification of a microporous metal-organic framework using high pressure: accessing a new phase with oversized guest molecules S. C. McKellar, J. Sotelo, A. Greenaway, J. P.S. Mowat, O. Kvam, C. A. Morrison, P. A. Wright and S. A. Moggach, Chemistry of Materials, 2016, 28, 466.

Catalytic Enantioselective [2,3]-Rearrangements of Allylic Ammonium Ylides: A Mechanistic and Computational Study T. H. West, D. M. Walden, J. E. Taylor, A. C. Brueckner, R. C. Johnston, P. H.-Y. Cheong, G. C. Lloyd-Jones, A. D. Smith J. Am. Chem. Soc. 2017, 139, 4366-4375.

Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes A. G. Jarvis, L. Obrecht, P. J. Deuss, W. Laan, E. K. Gibson, P. P. Wells and P. C. J. Kamer Angew. Chem.-Int. Ed.  2017, 56, 13596-13600.